Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-19T05:42:24.728Z Has data issue: false hasContentIssue false

38 - Antimicrobial Resistance in Wild Boar in Europe: Present Knowledge and Future Challenges

from Part III - Conservation and Management

Published online by Cambridge University Press:  21 November 2017

Mario Melletti
Affiliation:
AfBIG (African Buffalo Initiative Group), IUCN SSC ASG
Erik Meijaard
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, H. K., Donato, J., Wang, H. H., et al. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology 8: 251259.Google Scholar
Allen, S. E., Boerlin, P., Janecko, N., et al. (2011). Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Applied and Environmental Microbiology 77(3): 882888.CrossRefGoogle ScholarPubMed
Barlow, M. (2009). What antimicrobial resistance has taught us about horizontal gene transfer. In Horizontal gene transfer: genomes in flux. Totowa, NJ: Humana Press, pp. 397411.Google Scholar
Baums, C. G., Verkühlen, G. J., Rehm, T., et al. (2007). Prevalence of Streptococcus suis genotypes in wild boars of Northwestern Germany. Applied and Environmental Microbiology 73(3): 711717.Google Scholar
Caleja, C., de Toro, M., Gonçalves, A., et al. (2011). Antimicrobial resistance and class I integrons in Salmonella enterica isolates from wild boars and Bísaro pigs. International Microbiology 14(1): 1924.Google Scholar
Capita, R. & Alonso-Calleja, C. (2013). Antibiotic-resistant bacteria: a challenge for the food industry. Critical Reviews in Food Science and Nutrition 53(1): 1148.Google Scholar
Chiari, M., Zanoni, M., Tagliabue, S., Lavazza, A. & Alborali, L.G. (2013). Salmonella serotypes in wild boars (Sus scrofa) hunted in northern Italy. Acta Veterinaria Scandinavica 55(1): 1.Google Scholar
Costa, D., Poeta, P., Sáenz, Y., et al. (2006). Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. Journal of Antimicrobial Chemotherapy 58(6): 13111312.CrossRefGoogle ScholarPubMed
D'Costa, V. M., Griffiths, E., & Wright, G. D. (2007). Expanding the soil antibiotic resistome: exploring environmental diversity. Current Opinion in Microbiology 10(5): 481489.CrossRefGoogle ScholarPubMed
D'Costa, V. M., King, C. E., Kalan, L., et al. (2011). Antibiotic resistance is ancient. Nature 477(7365): 457461.Google Scholar
Decastelli, L., Giaccone, V. & Mignone, W. (2014). Bacteriological examination of meat of wild boars shot down in Piedmont and Liguria, Italy. Journal of Mountain Ecology 3.Google Scholar
Dias, D., Torres, R. T., Fonseca, C., Mendo, S., & Caetano, T. (2015). Assessment of antimicrobial resistance levels and presence of pathogenic bacteria in Portuguese wild ungulates. Research in Microbiology 166(7): 584593.Google Scholar
Díaz-Sánchez, S., Sánchez, S., Herrera-León, S., et al. (2013). Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: relationship with management practices and livestock influence. Veterinary Microbiology 163(3): 274281.Google Scholar
European Medicines Agency (EMA) & European Centre for Disease Prevention and Control (ECDC). (2009). The bacterial challenge: time to react a call to narrow the gap between multidrug-resistant bacteria in the EU and development of new antibacterial agents. Stockholm.Google Scholar
European Medicines Agency (EMA) & European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). (2016). Sales of veterinary antimicrobial agents in 29 European countries in 2014. (EMA/61769/2016).Google Scholar
Fisher, K. & Phillips, C. (2009). The ecology, epidemiology and virulence of Enterococcus. Microbiology 155(6): 17491757.Google Scholar
Fonseca, C. & Correia, F. (2008). O Javali. Colecção Património Natural Transmontano. João, Azevedo Editor. [In Portuguese.]Google Scholar
Gilliver, M. A., Bennett, M. B., Hazel, S. M. & Hart, C. A. (1999). Antibiotic resistance found in wild rodents. Nature 401: 233234.Google Scholar
Grave, K., Torren-Edo, J., Muller, A., et al. (2014). Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. Journal of Antimicrobial Chemotherapy 69: 22842291.Google Scholar
Havelaar, A. H., Ivarsson, S., Löfdahl, M. & Nauta, M.J. (2013). Estimating the true incidence of campylobacteriosis and salmonellosis in the European Union 2009. Epidemiology and Infection 141(2): 293302.Google Scholar
Jones, K. E., Patel, N. G., Levy, M., et al. (2008). Global trends in emerging infectious diseases. Nature 451(7181): 990993.Google Scholar
Karesh, W. B., Dobson, A., Lloyd-Smith, J. O., et al. (2012). Ecology of zoonoses: natural and unnatural histories. The Lancet 380(9857): 19361945.Google Scholar
Kozak, G. K., Boerlin, P., Janecko, N., Reid-Smith, R. J. & Jardine, C. (2009). Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Applied and Environmental Microbiology 75(3): 559566.Google Scholar
Kronvall, G., Giske, C. G. & Kahlmeter, G. (2011). Setting interpretive breakpoints for antimicrobial susceptibility testing using disk diffusion. International Journal of Antimicrobial Agents 38(4): 281290.Google Scholar
Laxminarayan, R., Duse, A., Wattal, C., et al. (2013). Antibiotic resistance – the need for global solutions. The Lancet Infectious Diseases 13(12): 10571098.Google Scholar
Levy, S. B. & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine 10: S122S129.Google Scholar
Li, X. Z., Mehrotra, M., Ghimire, S. & Adewoye, L. (2007). β-Lactam resistance and β-lactamases in bacteria of animal origin. Veterinary Microbiology 121(3): 197214.Google Scholar
Literak, I., Dolejska, M., Radimersky, T., et al. (2010). Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. Journal of Applied Microbiology 108(5): 17021711.CrossRefGoogle ScholarPubMed
Macdonald, D. & Laurenson, M. K. (2006). Infectious disease: inextricable linkages between human and ecosystem health. Biological Conservation 131: 143150.Google Scholar
Massei, G., Kindberg, J., Licoppe, A., et al. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science 71(4): 492500.Google Scholar
Mather, A. E., Matthews, L., Mellor, D. J., et al. (2011). An ecological approach to assessing the epidemiology of antimicrobial resistance in animal and human populations. Proceedings of the Royal Society of London B: Biological Sciences 279(1733): 16301639.Google Scholar
Meng, X. J., Lindsay, D. S. & Sriranganathan, N. (2009). Wild boars as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364(1530): 26972707.Google Scholar
Mentaberre, G., Porrero, M. C., Navarro-Gonzalez, N., et al. (2013). Cattle drive Salmonella infection in the wildlife–livestock interface. Zoonoses and Public Health 60(7): 510518.Google Scholar
Mokracka, J., Koczura, R. & Kaznowski, A. (2012). Transferable integrons of Gram-negative bacteria isolated from the gut of a wild boar in the buffer zone of a national park. Annals of Microbiology 62(2): 877880.Google Scholar
Navarro-Gonzalez, N., Mentaberre, G., Porrero, C. M., et al. (2012). Effect of cattle on Salmonella carriage, diversity and antimicrobial resistance in free-ranging wild boar (Sus scrofa) in northeastern Spain. PLoS ONE 7(12): 51614.CrossRefGoogle ScholarPubMed
Navarro-Gonzalez, N., Casas-Díaz, E., Porrero, C. M., et al. (2013). Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boars in Barcelona, Spain. Veterinary Microbiology 167(3): 686689.Google Scholar
Navarro-Gonzalez, N., Velarde, R., Porrero, M. C., et al. (2014). Lack of evidence of spill-over of Salmonella enterica between cattle and sympatric Iberian ibex (Capra pyrenaica) from a protected area in Catalonia, NE Spain. Transboundary and Emerging Diseases 61(4): 378384.Google Scholar
Österblad, M., Norrdahl, K., Korpimäki, E. & Huovinen, P. (2001). Antibiotic resistance: How wild are wild mammals? Nature 409: 3738.Google Scholar
Ostfeld, R. S., Glass, G. E. & Keesing, F. (2005). Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in Ecology & Evolution 20(6): 328336.Google Scholar
Poeta, P., Costa, D., Igrejas, G., Rodrigues, J. & Torres, C. (2007). Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). Veterinary Microbiology 125(3): 368374.Google Scholar
Reisen, W. K. (2010). Landscape epidemiology of vector-borne diseases. Annual Review of Entomology 55: 461483.Google Scholar
Rwego, I. B., Isabirye-Basuta, G., Gillespie, T. R. & Goldberg, T. L. (2008). Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conservation Biology 22(6): 1600–7.Google Scholar
Schierack, P., Römer, A., Jores, J., et al. (2009). Isolation and characterization of intestinal Escherichia coli clones from wild boars in Germany. Applied and Environmental Microbiology 75(3): 695702.Google Scholar
Singer, R. S., Ward, M. P. & Maldonado, G. (2006). Can landscape ecology untangle the complexity of antibiotic resistance? Nature Reviews Microbiology 4(12): 943952.Google Scholar
Sjölund, M., Bonnedahl, J., Hernandez, J., et al. (2008). Dissemination of multidrug-resistant bacteria into the Arctic. Emerging Infectious Diseases 14(1): 7072.Google Scholar
Thaller, M.C., Migliore, L., Marquez, C., et al. (2010). Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance. PLoS ONE 5(2): 8989.Google Scholar
Vieira-Pinto, M., Morais, L., Caleja, C., et al. (2011). Salmonella sp. in game (Sus scrofa and Oryctolagus cuniculus). Foodborne Pathogens and Disease 8(6): 739740.Google Scholar
Wahlstrom, H., Tysen, E., Olsson Engvall, E., et al. (2003). Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Veterinary Record 153(3): 7480.Google Scholar
Ward, M. J., Gibbons, C. L., McAdam, P. R., et al. (2014). Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Applied and Environmental Microbiology 80(23): 72757282.CrossRefGoogle ScholarPubMed
Wellington, E. M., Boxall, A. B., Cross, P., et al. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases 13(2): 155165.Google Scholar
Woolhouse, M. & Farrar, J. (2014). Policy: an intergovernmental panel on antimicrobial resistance. Nature 509: 555557.Google Scholar
World Health Organization (WHO). (2012). Critically important antimicrobials for human medicine. Geneva: WHO.Google Scholar
World Health Organization (WHO). (2014). Antimicrobial resistance: global report on surveillance. World Health Organization. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdfGoogle Scholar
World Health Organization (WHO). (2016). Ebola situation report. http://apps.who.int/ebola/ebola-situation-reportsGoogle Scholar
Zottola, T., Montagnaro, S., Magnapera, C., et al. (2013). Prevalence and antimicrobial susceptibility of Salmonella in European wild boar (Sus scrofa); Latium Region – Italy. Comparative Immunology, Microbiology and Infectious Diseases 36(2): 161168.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×