Skip to main content

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) Analysis of Members of the Mycobacterium tuberculosis Complex

  • Protocol
  • First Online:
Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1247))

Abstract

Typical CRISPR (clustered, regularly interspaced, short palindromic repeat) regions are constituted by short direct repeats (DRs), interspersed with similarly sized non-repetitive spacers, derived from transmissible genetic elements, acquired when the cell is challenged with foreign DNA. The analysis of the structure, in number and nature, of CRISPR spacers is a valuable tool for molecular typing since these loci are polymorphic among strains, originating characteristic signatures. The existence of CRISPR structures in the genome of the members of Mycobacterium tuberculosis complex (MTBC) enabled the development of a genotyping method, based on the analysis of the presence or absence of 43 oligonucleotide spacers separated by conserved DRs. This method, called spoligotyping, consists on PCR amplification of the DR chromosomal region and recognition after hybridization of the spacers that are present. The workflow beneath this methodology implies that the PCR products are brought onto a membrane containing synthetic oligonucleotides that have complementary sequences to the spacer sequences. Lack of hybridization of the PCR products to a specific oligonucleotide sequence indicates absence of the correspondent spacer sequence in the examined strain. Spoligotyping gained great notoriety as a robust identification and typing tool for members of MTBC, enabling multiple epidemiological studies on human and animal tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jansen R, van Embden J, Gaastra WL, Schouls M (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575

    Article  CAS  PubMed  Google Scholar 

  2. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 31: 1709–1712

    Article  Google Scholar 

  3. Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    Article  CAS  PubMed  Google Scholar 

  4. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653–663

    Article  CAS  PubMed  Google Scholar 

  5. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186

    Article  CAS  PubMed  Google Scholar 

  6. Marraffini L, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11: 181–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Groenen PM, Bunschoten AE, van Soolingen D, van Embden JD (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10:1057–1065

    Article  CAS  PubMed  Google Scholar 

  8. Kamerbeek J, Schouls L et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hoe N, Nakashima K, Grigsby D et al (1999) Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 5:254–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Schouls LM, Reulen S, Duim B et al (2003) Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J Clin Microbiol 41:15–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Van Embden JDA, Van Gorkom T, Kremer K, Jansen R et al (2000) Genetic variation and evolutionary origin of the Direct Repeat locus of Mycobacterium tuberculosis complex bacteria. J Bacteriol 182:2393–2401

    Article  PubMed Central  PubMed  Google Scholar 

  12. Caimi K, Romano MI, Alito A et al (2001) Sequence analysis of the direct repeat region in Mycobacterium bovis. J Clin Microbiol 39: 1067–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Filliol I, Driscoll JR, Van Soolingen D et al (2003) Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 41: 1963–1970

    Article  PubMed Central  PubMed  Google Scholar 

  14. Streicher EM, Victor TC, van der Spuy G et al (2007) Spoligotype signatures in the Mycobacterium tuberculosis complex. J Clin Microbiol 45:237–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Van Soolingen D (2001) Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med 249:1–26

    Article  PubMed  Google Scholar 

  16. Brudey K, Driscoll JR, Rigouts L et al (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6:23

    Article  PubMed Central  PubMed  Google Scholar 

  17. Intitute Pasteur de la Guadeloupe (1993) Tuberculose et Mycobactéries, Abymes Cedex. http://www.pasteur-guadeloupe.fr/tb/bd_myco.html. Accessed 10 Jan 2014

  18. Mycobacterium bovis spoligotyping Database. http://www.Mbovis.org. Accessed 10 Jan 2014

  19. van der Zanden AGM, Kremer K, Schouls LJ et al (2002) Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides. J Clin Microbiol 40:4628–4639

    Article  PubMed Central  PubMed  Google Scholar 

  20. Javed MT, Aranaz A, de Juan L et al (2007) Improvement of spoligotyping with additional spacer sequences for characterization of Mycobacterium bovis and M. caprae isolates from Spain. Tuberculosis 87:437–445

    Article  PubMed  Google Scholar 

  21. Duarte EL, Domingos M, Amado A, Botelho A (2008) Spoligotype diversity of Mycobacterium bovis and Mycobacterium caprae animal isolates. Vet Microbiol 130:415–421

    Article  CAS  PubMed  Google Scholar 

  22. Rodríguez S, Bezos J, Romero B, de Juan L et al (2011) Mycobacterium caprae infection in livestock and wildlife, Spain. Emerg Infect Dis 17:532–535

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundacão para a Ciência e Tecnologia (FCT) through project PTDC/CVT/117794/2010 and in the framework of Projecto 3599—Promover a Produção Científica e Desenvolvimento Tecnológico e a Constituição de Redes Temáticas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Botelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Botelho, A., Canto, A., Leão, C., Cunha, M.V. (2015). Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) Analysis of Members of the Mycobacterium tuberculosis Complex. In: Cunha, M., Inácio, J. (eds) Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies. Methods in Molecular Biology, vol 1247. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2004-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2004-4_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2003-7

  • Online ISBN: 978-1-4939-2004-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics